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Abstract. Two major research themes have dominated the fluid dynamical study of blood flow in arteries: (a)
propagation of the pressure pulse and (b) flow patterns and wall shear stress (WSS) distribution in complex
arterial geometries. The former led to physiological understanding and permitted the interpretation of diagnostic
measurements of the wave-forms of blood pressure and flow-rate, for example. The latter was driven by the need
to understand the link between wall shear stress and the development of arterial disease, and the understanding
gained is also used in the design of surgical interventions such as bypass grafts. Pulse wave modelling has always
been essentially mathematical, using one-dimensional linear or weakly nonlinear theory, and can therefore give
significant understanding very simply, as is outlined in this paper. The relatively new wave-intensity analysis of
the pulse wave shows that the subject is still capable of giving new insight. The study of time-dependent flow in
complex three-dimensional geometry, even when the tubes are taken to be rigid and the fluid Newtonian, is much
more difficult. Realistic simulation requires the computational solution of the full Navier-Stokes equations, in a
geometry obtained from a particular subject by means of magnetic resonance imaging (say), using input flow or
pressure data that are also obtained by non-invasive imaging. The combined computational procedure has not yet
been developed to the point at which one can have confidence in its accuracy, but it soon will be. However, this is
not mathematical modelling and does not clearly lead to new fluid dynamical understanding. For that one must go
to idealised models such as uniform curved tubes, which lead to interesting fluid dynamics, but it is not clear how
relevant they are to biomedical practice. To show that mathematical modelling is not dead, the paper will conclude
with a brief description of a recent model of the new process of transmyocardial laser revascularisation, developed
to restore oxygen supply to heart muscle cure off by an infarct, for example.
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1. Introduction

In this paper I want to distinguish between mathematical modelling and mere computation. If
the geometry and motion of a blood vessel and its branches are prescribed, if the inflow and
outflow boundary conditions are given and if a simple rheology (e.g. Newtonian) is assumed
for blood, so that the governing equations (e.g. Navier-Stokes) are known, then the full details
of the flow can in principle be computed. The output of the computation, in the form of
distributions of wall shear stress and pressure, or predictions of the mass transport to the wall
of biologically important molecules, may represent a useful contribution to biomechanical
science, but that does not make it a mathematical model. Nor is it likely to be a significant
contribution to fluid mechanics, unless it reveals or aids the physical understanding of a novel
fluid mechanical phenomenon. The process of mathematical modelling requires the formula-
tion of a simplifying hypothesis that permits the isolation of a particular physical phenomenon
or mechanism of interest, leads to a reduced system of equations that can be solved or at least
investigated by mathematical methods (usually of course aided by computation these days),



420 T.J. Pedley

and enables the scientist to reach conclusions that encapsulate the underlying physics. This
is a rather narrower definition of mathematical modelling than is espoused by the authors of
most of the papers in this issue of the Journal of Engineering Mathematics, but it is one that
would have been recognised by Sir James Lighthill. It is important, however, to emphasise
that, in applying mathematical modelling or computation to fluid mechanical phenomena in
the cardiovascular system, the goal must be to enhance our understanding of that system.
Doing either mathematics or computing for its own sake may be satisfying and enjoyable, but
it is not good science unless it leads to something new for the biomedical community, or at
least for fluid dynamicists.

Sir James Lighthill was a past master at solving physical fluid mechanical problems by
mathematical means. He was an immensely powerful and prolific applied mathematician who
could give complete solutions to problems of great complexity, faced with which many other
people would simply give up or, these days, put the whole thing on a computer and learn little.
However, guided by his aeronautical research in the Second World War which he had to be
able to explain to non-mathematicians, he always tried to set out his theoretical ideas in words
as well as, or sometimes instead of, equations; this made following the theories somewhat
harder for the mathematically trained, but a lot easier for everyone else (see [1] for some
examples of his style).

Lighthill did not publish many papers on cardiovascular fluid dynamics but one of them, at
least, is a classic: I refer to the chapter entitled “Pulse propagation theory” in his book Math-
ematical Biofluiddynamics [2, Chapter 12]. This chapter provides a concise but admirably
clear exposition of the linear, one-dimensional theory of wave propagation in elastic, fluid-
filled tubes, including the attenuation effects due to blood viscosity and wall viscoelasticity,
the amplitude-enhancing effect of vessel taper, and the mechanics of wave reflection and
transmission in a multiply-branched vascular tree. Section 2 of the present paper will be based
on that chapter (though without repeating it all) and will ask what additional benefits from
mathematical modelling of the pulse wave have been or can be achieved, if any. (Actually
there are some!)

Lighthill had a major impact on cardiovascular fluid dynamics research through the found-
ing at Imperial College, London, of the Physiological Flow Studies Unit, directed for many
years by C.G. Caro (and now subsumed within the new Department of Biomedical Engin-
eering). It was here that Caro and his colleagues formulated and gave arguments for the
“low wall shear stress hypothesis” for the initiation of atherosclerosis in arteries [3]. Their
work stimulated an enormous amount of research worldwide on arterial fluid dynamics and
how mechanical stresses can modify the biological properties of blood vessel walls, research
which continues to this day, as witnessed by several papers in the present issue. There is an
excellent introduction to this area of research in Lighthill’s survey paper on physiological
fluid dynamics [4]. Section 3 of this paper will summarise some of this work and will discuss
whether mathematical modelling has any further role to play in arterial fluid dynamics.

Lighthill’s other venture into cardiovascular fluid dynamics was less distinguished [5]. This
was a model of the pressure-driven passage of an elastic capsule (a red blood cell) through
an elastic or rigid tube (a capillary) at low Reynolds number. The analysis was brilliant, as
usual, but the physical model was flawed by an unrealistic assumption about the capsule’s
elastic properties and by an uncharacteristic error in the mechanical formulation, as pointed
out by Tözeren and Skalak [6]. Nevertheless this work serves to remind us (a) that blood is
not a homogeneous, Newtonian fluid and (b) that the microcirculation is a further source of
interesting fluid-mechanical problems. It will not be considered further in this paper, however.
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The final subject to be discussed in this paper (Section 4) is chosen as a good example of
how a new, speculative, medical procedure has given rise to a novel problem in theoretical fluid
dynamics, the solution of which has in turn led to a quantitative understanding of conditions in
which the procedure could work. The procedure is “transmyocardial laser revascularisation”
(TLR) and is intended to restore blood supply to heart muscle that has been cut off by an
infarct. The method consists of using a laser to drill small tunnels part way through the
ventricle wall from the inside, so that the wall may be perfused directly from the ventricle.
A model of how the beating of the heart enhances the oxygen uptake from such tunnels has
been developed by Waters [7, 8] and is briefly outlined here since both the procedure and the
mathematical model have some particularly interesting features.

2. Pulse propagation in arteries

2.1. BASIC LINEAR THEORY

When the heart ejects a bolus of blood into the already pressurised aorta, the pressure rises
further so the vessel, being elastic, becomes locally distended and the blood in it is set into
motion. The coupling between the restoring force of arterial elasticity and the inertia of the
blood results in a pressure wave propagating along the aorta. When this pulse wave encounters
a bifurcation which is not well-matched, i.e., at which there is a marked discontinuity in
admittance (the ratio of pressure perturbation to flow rate) it suffers some reflection and only
part of the energy is transmitted. In a normal human subject, the bifurcation at the end of the
aorta is mismatched, and the presence of a substantial reflected component is held responsible
for the main shape changes of the pressure and flow-rate wave forms as they propagate along
the aorta: peaking of the pressure pulse and diminution of the flow-rate pulse. An additional,
similar (but smaller) contribution to such shape changes comes from the gradual taper of
arteries with distance from the heart, a term that encompasses both a reduction in cross-
sectional area and an increase in stiffness and hence wave speed. The dissipative action of
blood viscosity and of wall viscoelasticity have a small effect on pulse propagation, though
a larger one on the flow-rate wave form. Nonlinear effects are also small in normal subjects,
since the speed index, analogous to the Froude number for shallow water channel flow, has a
maximum value of around 0·25 in the thoracic aorta and is smaller more peripherally. All that
can be observed is a slight steepening of the wave front in the aorta.

All these features except the last are analysed physically but precisely by Lighthill [2];
more mathematical expositions are given by Pedley [9, 10], among many others. The analysis
always begins by considering a uniform elastic tube containing an incompressible, invis-
cid fluid, perturbed by small, long wavelength disturbances which are governed by three
equations: conservation of fluid mass and momentum and a “tube law” P(A) relating cross-
sectional area A to local transmural pressure P (simpler versions of Equations (6–8) below).
It is a straightforward matter to deduce that the disturbances obey the linear wave equation,
showing that they will propagate without change of shape at a predictable wave-speed, c,
where

c2 = A

ρ

dP

dA
, (1)

evaluated at the undisturbed value of A, and ρ is the fluid density. Rather fortunately for
the credibility of theoreticians, the value of c given by (1) together with measured elastic
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properties of segments of excised arteries, agrees quite well with measurements of wave speed
in vivo (5–8 m s−1). The mechanism of pulse propagation is indeed essentially a balance
between wall elasticity and blood inertia, as first correctly analysed by Thomas Young [11].

Wave reflection and transmission at a single bifurcation between three elastic tubes con-
taining an inviscid fluid (parent tube 1, daughter tubes 2 and 3) is also easy to analyse on the
basis of continuity of pressure and flow rate at the junction. The wave shape is unchanged
on reflection and the amplitude of the reflected pressure wave is a multiple β of that of the
incident wave, where

β = Y1 − (Y2 + Y3)

Y1 + (Y2 + Y3)
(2)

and

Yj = Aj/ρcj (3)

is the characteristic admittance of tube j , whose wave speed and undisturbed cross-sectional
area, respectively, are cj , Aj . Peaking of the pressure pulse over the last quarter-wavelength
of a sinusoidal wave (virtually the whole length of the aorta) is predicted if β > 1. This is
consistent with human data which indicates that c varies continuously along the arterial tree,
but that A2 + A3 < A1 at a normal iliac bifurcation.

Extending the analysis to the multiple branches of a complete vascular tree is not possible
for a general wave form, because the finite length of a particular artery is a different frac-
tion of the wavelength for each Fourier frequency component. However, the extension can
be performed for each such Fourier component, and the complete waveform resynthesised
wherever necessary. This was impressively demonstrated by M.G. Taylor [12], who showed
how, starting from the peripheral end (e.g. zero pressure fluctuations in the venules), a com-
plete tree could be built up, junction by junction, to give a prediction of the flow rate wave
form given the pressure wave form (or vice versa) at the entrance to the parent vessel, the
aorta. Indeed, the frequency dependence of the input impedance of the aorta (the inverse of
the effective admittance of the whole system) has for many years been measured, or inferred
from measurement, and used by clinical physiologists to diagnose the mechanical state of the
vascular tree [13].

Working in the frequency (ω) domain after Fourier analysis also makes it possible to
analyse viscous and viscoelastic effects in a straightforward manner. Womersley [14, 15] and
McDonald [16] led the way and many others have followed. In large arteries the frequency
parameter

α = a
√

ω/ν, (4)

where a is vessel radius and ν is fluid kinematic viscosity, is large and viscous effects are
confined to thin boundary (Stokes) layers at the vessel wall. It follows that the wave propaga-
tion analysis that assumes an inviscid fluid gives a good first approximation to predicting the
pressure wave form, from which the influence on the flow rate wave form and the (minor)
attenuation can be easily predicted. When wall viscoelasticity is included, using measured
mechanical properties, further attenuation is predicted. However, this has led to an apparent
inconsistency in the standard, linear, frequency-domain analysis and I do not believe that it has
yet been resolved. Histand and Anliker [17] introduced trains of small, high frequency (40–
150 Hz) pressure waves into the aorta of a dog, in order to measure the attenuation directly.
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In accordance with linear theory, they found an approximately constant attenuation rate, k,
per wavelength (amplitude decreases like e−kx/λ, where x is distance and λ is wavelength);
the value of k was typically in the range 0·7–1·0. The theory for a viscous fluid predicts
k = 0·03–0·07 for this frequency range, so the remainder of the attenuation was attributed
to viscoelasticity. However, direct measurements of wall displacement [18, 19] have led to
estimates of the viscoelastic moduli of the wall that also indicate a wave attenuation rate
much smaller than observed. An explanation of such discrepancies is still lacking.

In a paper on mathematical modelling one should also not omit reference to Lighthill’s [2]
clear physical summary of the WKB method for analysing the pulse wave in a tapering tube.
The result is that a constant-amplitude, constant-propagation-speed wave of the form

p = P0f (t − x/c) (5a)

is replaced by

p = P0
[
Y0/Y (x)

]1/2
f

[
t −

∫ x

0

dx

c(x)

]
(5b)

in a tube in which the characteristic admittance and wave speed c, defined by (3) and (1)
respectively, are slowly varying functions of position. Here the term “slowly varying” means
that variation occurs over a distance that is long compared with a wavelength. Since the
wavelength of the lowest frequency component in the real mammalian pulse is around four
times the length of the aorta, the WKB approximation will be of limited validity in practice.

The frequency-domain approach outlined above enables most of the main, linear mechan-
isms affecting the pulse wave to be analysed simply and hence understood in some depth. For
example, it is possible to use the theory very simply to investigate how the pulse wave may
change with age. Dr Johannes Soma (personal communication) has made measurements of
pressure and flow-rate close to the root of the aorta, and has observed that the delay between
the maximum of the flow pulse and that of the pressure pulse increases with age, although the
reverse is commonly stated (based on the wave forms at more peripheral sites). Assuming that
the main effect of aging is to stiffen the arteries and hence increase the wave speed, a simple
calculation in Appendix A explains the observation clearly: it depends on the measurement site
being between one-eighth and one-quarter of a wavelength proximal to the aortic bifurcation.

However, as a simulation tool the frequency-domain approach has two drawbacks. The first
is that, in order to predict the input admittance of the systemic vascular tree, it is necessary to
start in the periphery, working up generation by generation to the aorta, and thus in principle
to know the physical properties (length, characteristic admittance and wave speed) of all
branches of the tree. It is of course impossible to measure most, or indeed any, of these, except
lengths, in vivo, so generic data from post mortem studies is used instead. The conclusions
tend to be qualitative at best. Moreover, resynthesising pressure and flow rate wave forms at
various sites within different large arteries is cumbersome and not transparent to the user. The
second drawback of the frequency-domain approach is that it cannot usually be generalised
to cases in which nonlinearity is significant, as it certainly is in particular disease conditions,
such as aortic valve incompetence which leads chronically to left ventricular hypertrophy and
hence to a large ejection velocity and speed index.
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2.2. NONLINEAR THEORY AND COMPUTATION

As large-scale computation became more feasible, therefore, many scientists went back to the
time-domain approach, in which the propagating wave form is calculated directly from the
complete one-dimensional equations of motion. In a fairly general form, these are as follows,
where a suffix x or t refers to partial differentiation:

Mass conservation:

At + (uA)x = −�(x, t), (6)

Momentum:

ut + uux = − 1

ρ
px + g̃ − F(A, u, . . .)u, (7)

Tube law:

p − pext = K(x)P (A,At , x). (8)

Here A(x, t) is vessel cross-sectional area, p(x, t) and u(x, t) are pressure and velocity aver-
aged across the cross-section, g̃ is the component of gravity directed along the vessel, pext is
the pressure external to the vessel. The unfamiliar term, �(x, t), in the mass equation is put
in to represent outflow at branches, so that the equations can be used for a complete arterial
pathway, including junctions. The quantity Fu in Equation (7) is a term usually thought of
as representing viscous friction (so F would be a function only of A for quasi-steady flow at
low Reynolds number) but it also includes both departures of the cross-sectionally integrated
convective inertia terms from uux and momentum loss associated with the mass outflow �.
K(x) is a measure of the stiffness of the vessel, non-uniform in a tapered tube, while P is a
dimensionless function representing the tube law – this includes At among its arguments to
cover viscoelastic behaviour, and x to allow for an intrinsic variation in the shape of the tube
law function, not just in stiffness.

Careful derivation of the x-momentum equation integrated across the cross-section (see
[20] for example) shows that the last term in (7) is in fact given by

−Fu = − S

ρA
τw − �

A
u′

w − 1

A

∂

∂x

∫
u′2dA,

where S is the (x-dependent) perimeter of the tube, τw is the viscous wall shear stress averaged
around the perimeter, and u′ is the difference between the longitudinal velocity and its cross-
sectional average, u (so u′

w is the value of u′ at the wall, where the fluid flows out). If the
velocity profile is approximately flat, except in very thin boundary layers, then taking u′ ≡ 0
is legitimate, and this is what is commonly assumed.

The above Equations (6–8) are hyperbolic in form, at least if the functions F and P do
not introduce too many complications, and therefore can be integrated using the method of
characteristics. Numerous authors did so in the late 1960s and 1970s, in order to investigate
various aspects of normal pulse propagation as well as the consequence of vascular disease,
such as the development of elastic jumps (analogous to shock waves in gas dynamics) in
cases of aortic valve incompetence. This paper is not intended as a review of all the relevant
literature, but will merely highlight one or two contributions and developments. One of the
most complete studies of pulse propagation along the aorta, iliac and femoral arteries was that



Mathematical modelling of arterial fluid dynamics 425

developed by Anliker and his colleagues, the results of which are described at length in [21].
The computation was based on measured values of pulse wave speed (1) as a function of x,
rather than of P(A), which clearly enhances accuracy. Pulse wave peaking and steepening
was accurately simulated, as were the major consequences of wave reflection from the aortic
bifurcation.

However, certain findings did not accord with measurement, such as an increase of mean
blood velocity with distance from the heart. Some disagreement with observation is inevitable
in a model which contains so many idealisations. These included using a quasi-steady (linear
or nonlinear) form for the function F . If unsteady laminar flow is assumed, the appropriate
friction term has a phase lead over the mean velocity u which tends to π/4 for a sinusoidal
wave at large values of α. Gerrard [22] pointed out that the method of characteristics cannot
be used directly in that case, but requires iteration, thereby removing its advantage over com-
putations based on finite-difference methods. The method of characteristics works quite well
only because the friction term is very small in large arteries. A similar problem arises when
wall viscoelasticity is taken into account, as discussed by Holenstein et al. [23].

A more serious difficulty arises in choosing the proper form of the outflow function � and
its effect on the momentum equation (7). To be compatible with one-dimensional computa-
tions � has to be smoothed out over a longitudinal distance equal to several tube diameters,
rather than concentrated at the branch site, which would be represented by a point (therefore
� by a delta function) in the one-dimensional approximation. Anliker et al. [21] represented
� in the form

� = γ (p − pc) φ(x), (9)

where the function φ(x) is a smoothly varying function and the factor γ (p − pc) is in-
cluded to represent the resistance to flow in the side branches; pc is capillary pressure and
γ is a constant. This form is equivalent to the assumption that the pressure-flow relation is
quasi-steady and linear (i.e., inertia-free) in all side branches, which is clearly not the case.
Recognising this, other authors (e.g. Chadwick [24]) have sought to model the side branches
using a complex admittance in place of the constant γ , but as noted above this really requires
analysis in the frequency domain since it will be frequency- (and branch-) dependent.

Many authors realised that, instead of trying to smooth out the effect of branches, especially
major branches, it would be better to extend the one dimensional model to account explicitly
for each branch, concentrated at a point. If the side branches to the main pathway being
analysed can be assumed to behave linearly then, as in the smooth approach, their behaviour
can be lumped analytically into an effective, complex, input admittance for each branch.
Taking this admittance to be constant is equivalent to lumping the side branch and the vessels
peripheral to it into a single resistance-inertance-capacitance system, i.e., the traditional zero-
space-dimensional Windkessel which, as a model for the whole arterial tree, preceded the
one-dimensional models discussed here. However, if the frequency-dependence of the admit-
tance is taken into account, as it should be according to one-dimensional theory, the whole
calculation will have to be performed iteratively: direct integration along characteristics is not
possible. On the other hand, if the nonlinearity in the branches is as important as in the main
pathway, there is nothing for it but to perform the nonlinear, one-dimensional computation
separately for each significant branch of the vascular tree, linked by continuity of pressure
and flow-rate at each junction.

Among the first full one-dimensional models of the aorta and legs, with lumped, linear
side-branches was that by Raines [25], who proved the feasibility of the method. Olufsen [26]
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formulated a method for predicting the input impedances of the side and peripheral branches
of an arterial tree, the central part of which consisted of three or four generations of branches
to be simulated in detail. Her method consisted of supposing that a peripheral bed supplying
a certain region of tissue consisted of a number of systematically asymmetric bifurcations for
which the frequency-dependent input admittance could be computed analytically. The number
of bifurcations would be determined by the size of the region being supplied. The output of her
model, albeit still a linear model, showed a much better phase relationship between pressure
and flow-rate wave forms than models with constant peripheral admittances.

As the one-dimensional computations have become more or less routine, attention has
turned to improving the basic model, especially in the context of abnormalities such as sten-
oses (constrictions) in one part of the system, or the introduction of bypass grafts, etc. If
nonlinearity is important in the one-dimensional equations, then surely it should be important
in the matching conditions linking two or three vessels of the system at stenoses or branches?
An early investigation is the very simple analysis by Pedley [27] of the reflection and trans-
mission of a linearly propagating pulse wave at a nonlinear stenosis, i.e., one across which
the pressure drop is proportional to the square of the flow-rate. Here the nonlinearity requires
nothing more complicated than solution of a quadratic equation at each time step. Clearly this
analysis could be used as easily for nonlinearly propagating waves.

Much more recently, Sherwin et al. [28] have derived the appropriate nonlinear matching
conditions at a bifurcation, assuming that there is no energy loss there (in contrast to the
stenosis model of Pedley [27]). Flow-rate is of course continuous, but it is total pressure,
p+ 1

2ρu2, that must also be conserved. The difficulty is to incorporate this boundary condition
into a numerical scheme for computing pressure and flow-rate everywhere. The key to doing
this came from the recognition that conditions at the branch at a certain time are determined
from the incoming characteristics only, that is from the forward-travelling wave in the parent
vessel, and from the backward-travelling (reflected) waves in the daughters. This work ap-
pears to provide the first rational way of modelling nonlinear wave propagation and reflection
in a general branched-tube network, with the branch matching conditions approximated as
accurately as the basic wave propagation, as long as there are no significant energy losses at
the bifurcations.

However, the flow in complex, three-dimensional geometries does normally give rise to
energy losses. Once attention is focussed on the complicated details of what happens at
branches, the whole philosophy of the modelling shifts. Instead of treating a junction as
occupying a point in a one-dimensional model, the purpose of studying which is to determine
the boundary conditions to be applied in that model, Quarteroni and his colleagues are now
looking at the detailed three-dimensional flow in the junction, and the one-dimensional models
of the arteries that meet there are used to provide the boundary conditions for that study [29,
30]. However, the details of flow in branches is important for other reasons, so discussion of
them is postponed to Section 3.

2.3. WAVE-INTENSITY ANALYSIS

Before leaving the one-dimensional theory of the pulse wave, it is worth summarising a rather
different way of looking at it which has led to a new and insightful interpretation of measure-
ments of pressure and velocity wave forms. The method was introduced by Parker et al. [31]
and that group has since developed it much further [32–35]; others have also joined in [36].
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Let us return to the simple, frictionless version of the Equations (6)–(8) for waves in an
intrinsically uniform tube, which (using (1)) can be written

pt + upx + ρc2ux = 0, (10a)

ut + uux + 1

ρ
px = 0. (10b)

The standard Riemannian theory, in which ±ρc multiplied by (10b) is added to (10a), shows
that the quantities p ± ∫

ρc du remain constant along the characteristic curves C± in x, t

space, defined by dx
dt

= u ± c; we assume that |u| < c everywhere, i.e., no elastic jumps
develop. Any finite wave can be analysed as the sum of infinitesimal ‘wavelets’, consisting of
small increments in pressure and velocity, p and u. Because every point in x, t space has
a C− characteristic passing through it, on which p − ∫

ρc du is constant, it follows that, for
every forward-travelling (C+) wavelet, the changes in p and u are related by

p+ = ρcu+. (11a)

Similarly for backward-travelling (C−) wavelets,

p− = −ρcu−. (11b)

The wave intensity (WI) is defined by

WI = pu; (12)

this is entirely analogous to acoustic energy, as discussed by Lighthill [37]. Hence, since
p = p+ + p− and u = u+ + u−, we have

WI = 1

ρc

(
p2

+ − p2
−
)
. (13)

That is, forward-travelling waves contribute only positively to WI and backward-travelling
waves only negatively, whatever the signs of p+ and p−.

Whether the pressure and velocity waveforms in an individual subject are measured sim-
ultaneously or are averaged over several cycles, it is easy to divide the cardiac cycle into a
number of time intervals, read off p and u from each interval, and calculate WI from
Equation (12). The result is a plot of WI against time throughout the cycle. Figure 1a, from
[35], shows pressure and velocity waveforms simultaneously measured in the ascending aorta
of a dog under control conditions. The corresponding wave intensity plot is given in Figure
1b. It is remarkable that there are two large positive peaks, just after the aortic valve opens and
just before it closes, and only a rather weak negative signal (reflected wave) in between.

A matter of some interest, in the diagnosis of obstructions in arteries or merely in the
assessment of the general state of a subject’s vascular health, is the separation of the measured
waveforms into their forward- and backward-travelling parts. This can be done without further
measurement if it is assumed that the wave speed is constant at the measurement location.
It will be constant if the pressure pulse amplitude is sufficiently small relative to the mean
pressure for the wave to behave approximately linearly. Then

p+ = 1

2
(p + ρcu) and p− = 1

2
(p − ρcu) (14)
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Figure 1. (a) Pressure and velocity as functions of time, measured in ascending aorta of a dog under control
conditions. (b) Wave intensity calculated from the data in (a), using equation (12): note a – the initial forward
compression wave at the start of systole, b – the forward expansion wave at the end of the systole, c – backward,
reflected waves in mid-systole. (From [35], with permission.)

and, if c is known, p± can be calculated. Moreover, c can usually be inferred from a plot of
p against u throughout the cycle. Figure 2, also from [35], shows such a p, u loop measured
in the ascending aorta of a dog under control conditions and with total occlusion of the upper
thoractic aorta. Both curves have a straight line segment, corresponding to the early ejection
phase during which one can be safe in assuming that there are no backward-travelling waves
in the ascending aorta. The slope of this segment, from Equation (11a), is ρc, from which c

can be determined.
Figure 3 shows the wave intensity from Figure 1b separated into its forward- and backward-

travelling parts. It can be seen that there is only a small backward-travelling component at any
time, though during the long period between the first and the second forward travelling peak
there is only a rather broad backward-travelling wave. Figure 4 shows the pressure and ve-
locity wave-forms similarly separated. These graphs show an interesting phenomenon during
diastole, during which there seem to be equal and opposite, gradually declining, forward-
and backward-travelling contributions to the flow velocity, which is zero. These, and the
corresponding pressure curves, look like an artefact, but can in fact be interpreted in terms
of a gradually-subsiding capacitance, as in the old Windkessel model [38].
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Figure 2. The p −u loop, derived from data sampled at 200 Hz, from the ascending aorta of dogs (a) in which the
upper thoracic aorta is occluded and (b) in control conditions. The slope of the dashed line gives the wave speed
in early systole, from Equation (11a). (From [35], with permission.)

3. Blood flow in complex arterial geometries

3.1. GENERAL

Prior to the late 1960s, pulse propagation was the only aspect of arterial blood flow that had
been subjected to systematic fluid dynamical analysis. At that time, however, the focus of
attention switched to measurement and analysis of the detailed flow patterns and distribu-
tions of wall shear stress (WSS) within arteries. This came about as a result of two seminal
contributions: by D.L. Fry [39], who noted that arterial endothelial cells could be damaged
by severely elevated levels of WSS, and by C.G. Caro and colleagues [3] who observed a
rough correlation between arterial sites which are prone to the development of arterial disease
(atherosclerosis) and sites at which the mean level of WSS would be expected to be low. This
expectation was based on a rather crude view of arterial fluid dynamics, but it has stood the
test of time, and the low-mean-shear hypothesis for the initiation of atherosclerosis has largely
prevailed over the high-shear hypothesis, although there is evidence that time-dependence of
the flow (in the form of repeated flow reversals) also has an effect [40].

The low-shear/high-shear debate was a tremendous stimulus to research in arterial fluid
mechanics, as well as in vascular wall biology. The aims of the latter have been to reveal
the biological and structural effects of various levels of WSS on endothelial cells (in vitro as
well as in vivo) and to try to understand how they come about (Davies [41]). The aims of
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Figure 3. Wave intensity, and its forward- and backward-running components, calculated from the data of
Figure 1, using Equations (12) and (14). (From [35], with permission.)

the former are to reveal and understand the actual distribution of WSS in the complex three-
dimensional geometry of large arteries. These aims have spawned a huge number of papers
in the fluid dynamics and bioengineering literature, describing model experiments, numerical
computations and mathematical analysis of the flow in a sequence of increasingly complex
geometries representative of normal or diseased arteries and of surgical modifications to them
(such as femoral bypass grafts). Topics considered have included: entry flow in straight tubes;
flow in constricted tubes; fully-developed and entry flow in uniform curved tubes; flow in
helical tubes; flow in moving tubes; flow in symmetric planar bifurcations; flow in asymmetric
branches; flow in non-planar curves or branches; flow in all of the above when the vessels
are elastic instead of rigid; using non-Newtonian as well as Newtonian models of blood
rheology; investigating unsteady as well as steady flow. Since the mean Reynolds number
in large arteries is quite large (several hundred, typically) the flow and WSS distribution are
extremely sensitive to small geometrical perturbations and to small changes in the time-course,
as represented by the wave-form of pressure-gradient or flow-rate. Steady flow can be non-
unique, and stable or unstable, though rarely fully turbulent. See [42–45, 9, 10] for reviews
and further references.

Such sensitivity to the precise spatial or temporal details raises doubts about the predict-
ive value of many of the numerical or experimental simulations that are performed on (for
example) home-made bifurcation models, or even casts of an individual subjects’ vessels.
They reveal great complexity of flow, which in itself is instructive, but since one subject’s
complexity is likely to be different from another’s, what is to be gained (other than technical
expertise) from the quantitative minutiae? In my view, thorough quantitative investigations
should be restricted to two extremes of the spectrum.
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Figure 4. The measured pressure (a) and velocity (b) wave forms, separated into their forward- and back-
ward-running components. (From [35], with permission.)

The first approach, currently being followed by several groups in North America, Europe
and Japan, is to seek to simulate the flow in each individual patient and predict the WSS
distribution for use in diagnosis or surgical planning (it goes without saying that the direct
and accurate measurement of WSS is not feasible using any known technique). This requires
direct imaging of the geometry, for example using magnetic resonance imaging (MRI). Then
the MR data, “suitably” smoothed (a process about which there is considerable controversy),
must be automatically converted to a computational mesh, on which CFD analysis will be
performed (usually using finite-element or finite-volume methods). Input to the calculations
in the form of two-point pressure or, more usually, one-point flow-rate wave forms also needs
to be measured. Again, MR methods are increasingly being used for flow rate measurement,
though Doppler ultra-sound is currently more reliable. At present every stage of this process
has problems and raises doubts about its validity and accuracy. Nevertheless, the development
of such integrated approaches is an area of great current excitement, and I am sure that we will
soon see reliable data emerging routinely for clinical use with individual patients: but it will
be expensive in computer resources. See [46], especially pages 717–728, and [47] for some
recent abstracts in this area. On the basis of the definition given at the start of this paper, such
fully computational approaches can be classified as non-mathematical.

The second approach is that of the applied mathematician: examine in great thoroughness
highly idealised geometries which can be readily reproduced by other investigators and in
each of which a single physical mechanism or phenomenon is exemplified. The main example
chosen for further investigation in Section 3.2 below is that of steady or pulsatile flow in a
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uniform curved tube with circular cross-section. Another example is that of unsteady, high-
Reynolds-number flow in a straight tube of non-uniform cross-section. A two-dimensional
version of the problem is discussed fully in [10, Section 4]. While being simple enough for
mathematical treatment, using the sophisticated methods of interactive boundary-layer theory
pioneered by Smith [48, 49], the analysis has revealed some novel phenomena which may be
significant in the arterial context and which are certainly of great fluid mechanical interest.
Many of the phenomena were first observed experimentally [50, 51] but were confirmed
computationally [52, 53] and analytically. For example, steady flow past an asymmetric,
oscillating indentation leads to the generation of vorticity waves downstream with wavelength
O(aRe1/7) where a is the undisturbed channel with and Re is the (large) Reynolds number,
if the Strouhal number (ωa/U , where ω is frequency and U mean velocity) is O(εRe−1/7),
εa being the indentation amplitude. Beneath the crests and above the troughs of these (large-
amplitude) waves are regions of flow recirculation, i.e., separated eddies, but instead of being
very sluggish, as in steady separated eddies, the flow in these eddies is very rapid, and the local
wall shear stress has a much higher value than elsewhere, not much lower. Similar vorticity
waves are found for oscillatory flow past a fixed asymmetric indentation, but in that case
there is no simple theory to predict them. In both cases, however, regions of flow separation
appear at significant distances from the geometrical disturbance that gives rise to them, but in
those regions the WSS is large not small. Neither of these features could be predicted from
a knowledge of steady separated flow. Moreover, it should be remembered that steady flow
in a diverging channel is non-unique at large Reynolds number, even when the divergence is
sufficiently gradual for boundary-layer theory to be applicable everywhere [54, 55]. It is not
yet known whether all these features carry over to three dimensions and hence to arteries, but
it is clear that steady-flow intuition cannot be trusted.

3.2. FLOW IN CURVED TUBES

3.2.1. Steady, fully-developed flow
When viscous fluid flows steadily in a uniform curved tube of radius a and centre-line radius of
curvature R, the flow is not everywhere parallel to the curved centreline: a secondary motion
appears even at low values of the Reynolds number. This is because a lateral pressure gradient
is needed to cause the flow to change direction and, in response, the faster-moving fluid near
the centre of the tube moves in a curve with larger radius of curvature than the slower-moving
fluid near the walls. Thus the centre fluid is swept towards the outside of the bend while the
fluid near the wall moves towards the inside. In a tube of small curvature ratio δ = a/R it
can be readily shown that the steady, fully-developed (independent of axial coordinate) flow
depends on a single dimensionless parameter

D = (2δ)1/2Ĝa3/µν, (15)

where Ĝ is the pressure gradient and µ, ν are the fluid’s dynamic and kinematic viscosities;
this is (2δ)1/2 times the Reynolds number in a straight pipe. D is usually called the Dean
number because Dean [56] was the first to analyse such flow, expanding the velocity field in
powers of D (actually in powers of D/96, so the solution’s validity is not limited to values
of D much less than 1.) Secondary flows such as those predicted by Dean are routinely seen
experimentally.

Later authors have provided either numerical or approximate analytical solutions to Dean’s
equations (i.e., the small-δ version of the Navier-Stokes equations) for values of D/96 that are



Mathematical modelling of arterial fluid dynamics 433

Figure 5. Computed axial velocity contours (left) and two-vortex secondary flow streamlines (right) for steady
flow in a curved tube of small curvature at D = 5000. (From [64], with permission.)

not small or O(1). For example, Collins and Dennis [57] gave solutions for values of D up to
5000, and were able to show that, as D is increased, the secondary motion causes an increasing
displacement of the peak longitudinal velocity towards the outside of the bend, where there
is therefore a high wall shear, and also pulls relatively high velocities round the side walls,
so that the longitudinal velocity profile in a plane perpendicular to the plane of curvature
becomes M-shaped (Figure 5). The changed axial flow also distorts the secondary flow, but
the basic Dean picture remains. For large D, Ito [58] indicated how an asymptotic expansion
could proceed, with an inviscid but vortical core flow in which the axial velocity ŵ and the
transverse stream function �̂ are given by

ŵ = ν

a
(2δ)−1/2D2/3f (x), �̂ = νD1/3y/f ′(x) (16)

where x, y are the dimensionless transverse coordinates (with y = 0 on the plane of sym-
metry) and f (x) is an arbitrary function, presumably to be determined from matching to the
viscous boundary layer on the tube wall, r = (x2+y2)1/2 = 1. Ito also showed that this bound-
ary layer would have dimensionless thickness D−1/3, and gave a crude (Kármán-Pohlhausen)
approximation to the solution of the boundary-layer equations and the function f (x). How-
ever, Ito noted, and Dennis and Riley [59] confirmed, that the boundary-layer approximation
breaks down near the innermost point on the curved wall (y = 0, x = −1), and a satisfactory
resolution of this problem has not yet been proposed. Certainly, the numerical solutions of
Collins and Dennis [57] appeared to be consistent with Ito’s asymptotic structure, so it might
be supposed that that structure holds everywhere, except perhaps in a neighbourhood of the
innermost point.

This was the position when two reviews of flow in curved tubes appeared in the early 1980s:
Pedley [9, Chapter 4] and Berger et al. [60]. The only real doubt about the asymptotic structure
had been cast by Van Dyke [61], who analysed the problem using his technique of extending
the validity of series expansions (here, in powers of D) to large values of the parameter by a
suitable transformation. He concluded that at least one branch of the large D solution – the
analytic continuation of the Dean expansion – had a different structure, in which (for example)
the transverse stream-function �̂ was proportional to νD1/4. No direct asymptotic study has
yet confirmed the existence of a solution with this structure; if it existed, it would suggest that
the large D flow is non-unique, with at least two different solution structures.

During the 1980s a sequence of papers appeared in which such non-uniqueness was clearly
demonstrated computationally [62–64]. When D is sufficiently small, the steady-flow equa-
tions have just one solution and there is a single secondary-flow vortex in each half of the
tube, as found by Dean [56] and by Collins and Dennis [57]. Dennis and Ng [62] found
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Figure 6. Computed axial velocity contours (left) and secondary flow streamlines (right) for steady flow in a
curved tube of small curvature at comparable values of the Dean number, D, showing the non-uniqueness of the
flow. The flow marked S is stable, those marked U are unstable. (From [64], with permission.)

that a continuous branch of such two-vortex flow persists to high values of D (with a flow
structure that varies with D in a manner consistent with Ito’s [58] proposal, not Van Dyke’s
[61] suggestion). However, they also found that there is a critical value of D, say D1, above
which more than one steady solution to the equations exists; Dennis and Ng [62] found D1

to be about 956, a value confirmed by both Daskopoulos and Lenhoff [64] and Yanase et al.
[63]. Daskopoulos and Lenhoff computed two more solutions for D in excess of D1, and two
more again for D greater than another critical value D2 (approximately 2500). The contour
and streamline plots for all four solutions are shown in Figure 6 of which A and B are the
two solutions that exist for D > D1 (at D = 3000) and C and D are those that exist only
for D > D2 (at D = 3100). All these solutions are four-vortex in character (two vortices in
each half of the tube) and do not look very different from each other. However, Daskopoulos
and Lenhoff investigated their stability, and found that the only stable four-vortex flow for
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D > D1 is that depicted in Figure 5(a); the others are all unstable. This result suggests that,
for D > D1, the flow that will actually be observed in an experiment will be either the two-
vortex solution or the four-vortex solution such as that of Figure 5(b). Presumably, if the Dean
number is gradually increased from a low value, the two-vortex flow will persist, but a suitably
violent perturbation could result in the four-vortex flow being set up.

We should note that Yanase et al. [63] performed a more general stability analysis, not
restricted to disturbances with top-bottom symmetry, and concluded that the four-vortex flow
is unstable after all, and therefore not observable. In contrast, in the experiments of Cheng
and Mok [65], the four-vortex flow was observed, and hence presumably stable, for a range of
values of Dean number when the curvature ratio δ was not very small.

It may be thought that whether a unique, stable steady flow exists for a certain geometry
and Reynolds (or Dean) number is not particularly important when the real flows of interest
are time-dependent anyway. Starting from a given initial state, with a given time-dependent
pressure gradient, surely the flow will be well determined as a solution of the Navier-Stokes
equations? In principle that is correct, but the existence of more than one steady solution,
stable or unstable, means that the outcome can depend very sensitively on the initial or
boundary conditions. A small change in geometry, or a small change in the pressure-gradient
waveform, may lead to a substantially different pattern of flow and wall shear. The pattern
could vary from one cycle to the next, in a chaotic manner.

3.2.2. Unsteady, fully-developed flow
Apart from the stability analyses referred to above, there have been essentially two types of un-
steady flow studied, oscillatory and impulsively-started. Oscillatory flows include those with
non-zero and zero mean pressure gradient (or flow rate) as well as those with non-sinusoidal
time dependence, e.g. mimicking the physiological pressure-gradient wave form, as well as
sinusoidal. Principal papers include that of Lyne [66], who analysed the transverse steady
streaming generated within the Stokes boundary layers driven by a sinusoidally oscillating
pressure gradient (zero mean); he found a two-vortex steady-streaming flow, directed in the
opposite sense to steady secondary flows. Smith [67] analysed many different regimes and
Blennerhassett [68] looked in particular at the most interesting case, in which the magnitude of
the Lyne steady-streaming velocity associated with the oscillatory part of the pressure gradient
is of comparable magnitude to the secondary flow that would be driven by the mean pressure
gradient if that were acting alone. Blennerhassett found bifurcations to non-uniqueness for
a range of values of the mean Dean number D if the “steady-streaming Reynolds number”
Rs exceeds a critical value between 75 and 100 (Rs = δŴ 2

a /�ν, where Ŵa is the axial core
velocity amplitude and � is the oscillation frequency). When Rs exceeds about 150 the range
of values of D for which non-uniqueness is found seems to extend to infinity. These findings
were described and discussed in more detail by Pedley [9]. There have been more recent
computational studies of unsteady flow in curved tubes (e.g. [69, 70]), but apart from demon-
strating the complexity of the flow and its variability between different regions of parameter
space, these do not reveal any feature of particular interest to the mathematical modeller.

Flow in a curved tube driven by an impulsively-started (and then constant) pressure gradi-
ent can be regarded as a model (though not a very good one) for flow in the aortic arch at
the start of systole. The inviscid core flow is that of a potential vortex with axis at the tube’s
centre of curvature and therefore with higher velocity and hence wall shear stress towards the
inside of the bend. However, the associated pressure gradient drives a secondary flow in the
boundary layers from outside to inside, so the boundary layer thickens more rapidly at the
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inside and the site of maximum WSS switches to the outside after a short time. Farthing [71]
performed a power-series expansion of the flow for small times, but it clearly broke down a
little while after the switch in position of maximum WSS. The reason for the breakdown lies
in the collision of the two secondary flows (top and bottom) at the innermost point and the
consequent explosive thickening of the boundary layers. The nature of the resulting singularity
has been elegantly analysed by Lam [72] and by Riley [73], using Lagrangian and Eulerian
methods, respectively. Unfortunately, however, knowing the nature of the breakdown does
not help one analyse the structure of the flow afterwards. For that we would have to rely on
computational simulation or experiment.

In fact directly relevant experiments, and computations, have been performed by a group
at Marseille [74]. Starting flow was generated gravitationally in a large U-tube of circular
cross-section and the developing secondary flow was visualised using injected fluorosceine,
illuminated by a transverse laser sheet at various axial locations. At positions unaffected for
some time by the straight inlet and outlet regions (the flow therefore being fully developed
for that time) the collision of the secondary-flow boundary layers at the inner wall was clearly
seen. As the flow then erupted from the boundary layer a transverse vortex pair was formed,
with the appearance of a mushroom, which propagated across the cross-section. For some
parameter values the secondary vortex pair eventually filled the cross-section, as in fully-
developed steady flow, but for others the propagation stopped partway.

3.2.3. Entry flow
In finite or non-uniform tubes the flow cannot be fully-developed and must depend on the
axial coordinate, s (here made non-dimensional with respect to tube radius a). A number of
authors, starting with Olson [75] experimentally and Singh [76] mathematically, have invest-
igated entry flow, in which an irrotational, nearly flat, velocity profile exists at the entrance
s = 0. Very near the entrance, Blasius-type boundary layers develop, of thickness proportional
to (s/Re)1/2. However, the curvature-induced transverse pressure gradient initiates second-
ary motions, as for the unsteady flow considered above. Eventually boundary-layer theory
breaks down at the inside of the bend, after a distance s = O(δ−1/2), because the secondary
flows collide, in a singular manner first elucidated by Stewartson et al. [77]. Thereafter the
coreflow is distorted and fully-developed flow eventually emerges; the details are suscept-
ible only to computational and experimental investigation. The distance required to establish
fully-developed flow is shorter in a curved tube than a straight tube, because advection of
vorticity and momentum by the secondary flow is more efficient at redistributing them than
viscous diffusion alone. In a straight tube the entry length is proportional to a Re; in a curved
tube the corresponding quantity is aRe1/2δ−1/4 for δ � 1 (or, equivalently, aD1/3δ−1/2 from
Equations (15–16) – see Yao and Berger [78]).

Unsteady, non-reversing entry flow is quasi-steady very near the inlet, where the boundary
layer is so thin that the flow responds effectively instantaneously to changes in the longit-
udinal pressure gradient. The quasi-steady Blasius boundary-layer solution can thus be used
as the leading term of an expansion in powers of s, suitably modified by curvature and time
dependence, as demonstrated by Pedley [9, Section 4.4]. For a straight tube, Pedley [79] gave
an approximate analysis of the transition from quasi-steady Blasius flow near the entrance to a
purely diffusive Rayleigh layer further downstream, all within the confines of boundary-layer
theory. However, as for steady flow, such boundary layer theory breaks down an O(1) distance
from the entrance in a curved tube, owing to the collision of the secondary-flow boundary
layers, and we do not have a complete solution for the flow further downstream.
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3.2.4. Variable curvature
Arteries are not simple curved tubes of uniform, constant curvature. Most vessels have non-
uniform curvature and, indeed, non-planar curvature; extramyocardial coronary arteries, in
addition, have time-dependent curvature since the dimensions of the heart, on whose surface
they lie, vary considerably during a single cardiac cycle. All these features have been studied
in recent years; the most complete simulations have come from direct computation, as usual,
but the first papers in each case have had a substantial mathematical component, as the authors
have tried to understand the basic physics of a new sub-branch of fluid dynamics that had not
arisen previously in another context.

The first relevant study was that by Smith [80] who analysed steady flow from a straight
tube (in s < 0, say) in which there is Poiseuille flow, into a curved tube of small, constant
curvature δ (in s > 0). The analysis required a three-dimensional version of the internal
boundary-layer theory developed for indented channels [48, 49], which is quite complex. The
overall results are not very surprising, in that, near s = 0, the core flow goes straight on,
generating rather strong secondary boundary layers as it impinges on the wall of the curved
tube. There is also an upstream influence, due to the pressure perturbation induced by the
impingement, and the flow in the boundary layer adjusts itself accordingly over a distance
comparable with the tube radius. Downstream, as usual, the solution breaks down at s = O(1),
where the perturbation to the oncoming flow can no longer be regarded as small.

Smith’s solution was (slightly) extended by Pedley [9, Section 4.5] to permit continuous
variation with s of the curvature parameter δ: the tube has uniform, circular cross-section,
but the (planar) curvature varies. The essential modification was to incorporate δ(s) into the
coordinate system, so that the boundary of the tube in every constant –s plane, perpendicular to
the centre line, is always at r = 1 in polar coordinates (r, θ). A further extension to space- and
time-dependent (but still planar) curvature was made by Lynch et al. [81]. Again, the object
was to keep the boundary at r = 1, by incorporating the variable dimensionless curvature
δ(s, t), so that the leading term in any new solution would be a known solution, such as
Poiseuille flow in a straight tube or flow in a uniform, fixed, curved tube, and would be valid
for all s. This aim was achieved, but the resulting equations were extremely complex. For
example, the θ-component of the Navier-Stokes equation is as follows:
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where s is distance measured along the tube centreline, which lies in the x − y plane and has
equation

y = af (s, t);
also

h = 1 − arfss

C
cos θ, C = (

1 − a2f 2
s

)1/2
.

It is clear that a set of equations like this can be solved analytically only in certain asymp-
totic limits in which many of the terms drop out. Lynch et al. [81] looked in particular at two
cases. One was a uniformly curved tube with small but weakly time-dependent curvature (a
perturbation to Dean flow). The other was a time-dependent sinuous tube of small amplitude
(an extension to the steady flow analysed by Murata et al. [82]. The results were of some in-
terest though not very surprising. For example, in a sinuous tube oscillating at high frequency
the axial wall shear stress is greatest at the inside of bends, not the outside as in steady flow,
because the core flow goes essentially straight on all the time, and the boundary layer will be
thinnest at the inside. However, the main value of these asymptotic solutions is as test cases
for full computations.

It will be clear from the above that, in the author’s opinion, a judicious mixture of mathem-
atical modeling, computation and experiment is capable of providing a much greater depth of
understanding of fluid mechanical phenomena than either of the last two on their own, or even
together. The uninitiated might think that the value of mathematical modelling is greatest in
the early years of a field, such as arterial fluid mechanics, and all the details can later be filled
in by computer, but that is not the case. To underline the fact that the modelling approach is
by no means dead, Section 4 is devoted to a recent model by Waters [7, 8] of transmyocardial
laser revascularisation.

4. Transmyocardial laser revascularisation (TLR)

As stated in the introduction, this procedure consists of using a laser to drill a number of
tunnels, of around 1mm in diameter, partway through the wall of the left ventricle from the
inside, when that part of the wall has been deprived of blood supply as a result of an infarct.
The idea is that the heart muscle can be perfused with blood from these tunnels, and kept alive
long enough for angiogenesis to have generated a new network of capillaries emanating either
from the tunnels or from other, unblocked, parts of the coronary circulation. The hypothesis
that forms the basis of the mathematical model of Waters [7, 8] is that the pulsation in the
dimensions of the tunnels, driven by the beating of the ventricle, causes blood to be pumped
in and out of them. Oxygen uptake is enhanced over what would be achieved by diffusion
alone by a process of shear (or Taylor) dispersion in the tunnels. The purpose of the modelling
is to estimate the degree of that enhancement.

The tunnels are assumed to be sufficiently far apart not to influence each other, so that a
single tunnel can be studied in isolation. This tunnel is taken to be a long, narrow cylinder
of time-varying length and radius (Figure 7). Blood, modelled as a viscous, incompressible
Newtonian fluid, occupies and flows in the tunnel. The oxygen concentration in the tunnel
is C(x, t), It is taken up by the tissue across the wall of the tunnel; in the tissue, where its
concentration is θ(x, t), it is consumed, at a rate proportional to its concentration. We take
cylindrical polar coordinates (x, r), which have been non-dimensionalised with respect to the
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Figure 7. Sketch of the closed-end tunnel drilled in the left ventricle wall during transmyocardial laser revascular-
isation. All variables shown are dimensionless: cylindrical polar coordinates (x, r), velocity components (u, υ),
oxygen concentration in blood (C) and tissue (θ), length and radius of the tunnel (a(t), where t is time).

resting length b0 and radius a0 of the tunnel, respectively (b0 � a0). The time-dependent
length and radius are then given by

x = a(t) and r = a(t), where a(t) = 1 + ε sin t (17)

and where time t is non-dimensionalised with respect to the inverse of the radian frequency
of the oscillation, 1/ω, and ε is a small amplitude parameter. The closed end of the tunnel is
at x = 0.

As the tunnel expands, blood is sucked in at x = a(t); as it contracts, the blood is
pushed out again. Conservation of mass means that the dimensionless longitudinal velocity
u is directly proportional to x, and the radial velocity υ is a function only of r and t , except
in small regions near the ends. Hence the nonlinear inertia terms in the x-component of the
Navier-Stokes equation, such as uux , will be non-zero, so the velocity field cannot vary purely
sinusoidally in time. For example, if u were supposed to be sinusoidal – proportional to
εx cos t , say – then uux would be proportional to ε2x cos2 t , which has non-zero mean. The
non-zero mean flow generated by such nonlinear self-interaction of an oscillating component
is the steady streaming. The steady streaming is partly, but not wholly, responsible for the
enhancement of oxygen transfer, as we shall see.

In the tube, the oxygen concentration C, scaled with the mean concentration in the blood,
obeys the dimensionless advection-diffusion equation

Ct + u · ∇C = ε2

P
∇2C, (18)

where the oscillatory Peclet number is assumed to be large, of O(ε2) as ε → 0:

a2
0ω

D
= P

ε2
� 1. (19)

The velocity field can be expanded in powers of ε, with the purely sinusoidal oscillation as
the leading term, so that

u = εu1 + ε2u2 + . . . , (20)

where

u1 = Re
(
u11eit)

u2 = u20 + Re
(
u22e2it

)
.

Here the quantities uij are functions only of position, u20 representing the steady streaming,
and u11,u22 being complex and representing the oscillations.
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Substitution of (20) in (18) suggests that C also be expanded in powers of ε:

C(x, t) = C0 + εC1 + εC2.

At leading order in ε, (18) gives ∂C0/∂t = 0, so we can deduce that C0 is a function only of
x, but nothing further. First order in ε then gives

C1t = −u1 · ∇C0 = −1

2

(
u11eit + u∗

11e−it
) · ∇C0,

where ∗ represents complex conjugate. Hence

C1 = i

2

(
u11eit − u∗

11e−it) · ∇C0.

The O(ε2) equation is

C2t + u1 · ∇C1 + u2 · ∇C0 = 1

P
∇2C0,

and it can be seen that the time-average of this equation gives a single equation for C0(x).
After some calculation we obtain

U · ∇C0 = 1

P
∇2C0, (21)

where

U = 1

2
Im(u11 · ∇u∗

11) + u20.

That is to say, the mean oxygen concentration in the tube satisfied a steady advection-diffusion
equation, but with an effective velocity field U that differs from the actual mean velocity u20.
That is the most interesting mathematical feature of this model.

In the present case we can write

U = [xU(r), V (r)]
where U,V can be calculated analytically. Moreover the modified Peclet number P is, in
practice, quite small. It can then be shown that the blood-oxygen concentration, averaged
across the tunnel cross-section, Ĉ, satisfies a simple ordinary differential equation in x:

x2 ∂2Ĉ

∂x2
+ 2x

∂Ĉ

∂x
− γ Ĉ = 0 (22)

where γ is proportional to P −2 but also depends on the oxygen diffusivity and consumption
rate in the tissue, and its transfer rate across the tunnel wall.

From the solution of this equation, subject to appropriate boundary conditions at the ends,
the mean oxygen uptake rate by the tissue as a whole can be computed. Quantitatively, the
results are not startling but, based on values of the transfer rate and consumption rate obtained
from the literature (in the case of transfer rate, not from coronary blood vessels), Waters
predicted that an array of tunnels of diameter 1mm, spaced 4mm apart, would provide an
oxygen uptake rate of 5 − 10 × 10−10mol cm−3 s−1. This is still only 1–2% of the rate for
healthy heart muscle, but exceeds that obtained in static tunnels, by pure diffusion, by a factor
of 10–20.
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Appendix A. The effect of aging on the phase difference between the pressure and
flow-rate waveforms in the aorta

Following Pedley [10, Section 3.3], we suppose that the pressure wave incident on a bifurca-
tion of an elastic tube has the sinusoidal form

PI cos
[
ω(t − x/c1)

]
,

where c1 is the wave speed in the parent tube, ω is frequency and PI is amplitude. We take
x = 0 at the bifurcation, so x < 0 in the parent tube. Then the full pressure and flow-rate in
the parent tube, relative to the constant mean pressure, are given by linear, long-wavelength
theory to be

P

PI

= cos

[
ω

(
t − x

c1

)]
+ β cos

[
ω

(
t + x

c1

)]
, (A1)

Q

Y1PI

= cos

[
ω

(
t − x

c1

)]
− β cos

[
ω

(
t + x

c1

)]
, (A2)

where

β = Y1 − (Y2 + Y3)

Y1 + (Y2 + Y3)
(A3)

and Yj is the characteristic admittance of tube j (1 = parent, 2,3 = daughters).
For a given value of x < 0, we calculate the times τ1/ω, τ2/ω at which p and Q,

respectively, are maximum. Simple calculus gives

tan τ1 = −γ tan α, tan τ2 = −γ −1 tan α

where α = −ωx/c1 > 0 and

γ = 1 − β

1 + β
> 0.

Hence

tan (τ1 − τ2) = γ −1 − γ

2
sin 2α = 2β

1 − β2
sin 2α. (A4)

Thus, if 0 < β < 1 and if 0 < α < π/4, and presuming that τ1 −τ2 takes the smallest positive
value given by (A4), it follows that τ1 − τ2 deceases as α decreases. However, if 0 < β < 1
and π/4 < α < π/2, τ1 − τ2 will increase as α decreases.

In applying this to the pressure and flow-rate pulses in the aorta, we recall that the aortic
bifurcation is normally a site of positive pressure-wave reflection, i.e., 0 < β < 1. We
also note that α/2π is the distance upstream from the bifurcation as a fraction of the pulse
wavelength. For a frequency of 1Hz and a wave speed of 5–8 ms−1, the wavelength is 5–8m,
so near the aortic valve, where −x is the length of the aorta, say about 1m, α would be in the
range π/4 < α � 2π/5. Thus, finally, if the only effect of aging is to stiffen the arteries – i.e.,
to increase c1, c2 and c3 equally – without altering the area ratio at the bifurcation so that β

would remain unchanged, we may conclude that τ1 − τ2 would increase with age.
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